relativedelta

Module Contents

Classes

relativedelta(self,dt1=None,dt2=None,years=0,months=0,days=0,leapdays=0,weeks=0,hours=0,minutes=0,seconds=0,microseconds=0,year=None,month=None,day=None,weekday=None,yearday=None,nlyearday=None,hour=None,minute=None,second=None,microsecond=None) The relativedelta type is based on the specification of the excellent

Functions

_sign(x)
class relativedelta(dt1=None, dt2=None, years=0, months=0, days=0, leapdays=0, weeks=0, hours=0, minutes=0, seconds=0, microseconds=0, year=None, month=None, day=None, weekday=None, yearday=None, nlyearday=None, hour=None, minute=None, second=None, microsecond=None)

The relativedelta type is based on the specification of the excellent work done by M.-A. Lemburg in his mx.DateTime extension. However, notice that this type does NOT implement the same algorithm as his work. Do NOT expect it to behave like mx.DateTime’s counterpart.

There are two different ways to build a relativedelta instance. The first one is passing it two date/datetime classes:

relativedelta(datetime1, datetime2)

The second one is passing it any number of the following keyword arguments:

relativedelta(arg1=x,arg2=y,arg3=z...)

year, month, day, hour, minute, second, microsecond:
    Absolute information (argument is singular); adding or subtracting a
    relativedelta with absolute information does not perform an arithmetic
    operation, but rather REPLACES the corresponding value in the
    original datetime with the value(s) in relativedelta.

years, months, weeks, days, hours, minutes, seconds, microseconds:
    Relative information, may be negative (argument is plural); adding
    or subtracting a relativedelta with relative information performs
    the corresponding aritmetic operation on the original datetime value
    with the information in the relativedelta.

weekday:
    One of the weekday instances (MO, TU, etc). These
    instances may receive a parameter N, specifying the Nth
    weekday, which could be positive or negative (like MO(+1)
    or MO(-2). Not specifying it is the same as specifying
    +1. You can also use an integer, where 0=MO. Notice that
    if the calculated date is already Monday, for example,
    using MO(1) or MO(-1) won't change the day.

leapdays:
    Will add given days to the date found, if year is a leap
    year, and the date found is post 28 of february.

yearday, nlyearday:
    Set the yearday or the non-leap year day (jump leap days).
    These are converted to day/month/leapdays information.

There are relative and absolute forms of the keyword arguments. The plural is relative, and the singular is absolute. For each argument in the order below, the absolute form is applied first (by setting each attribute to that value) and then the relative form (by adding the value to the attribute).

The order of attributes considered when this relativedelta is added to a datetime is:

  1. Year
  2. Month
  3. Day
  4. Hours
  5. Minutes
  6. Seconds
  7. Microseconds

Finally, weekday is applied, using the rule described above.

For example

>>> dt = datetime(2018, 4, 9, 13, 37, 0)
>>> delta = relativedelta(hours=25, day=1, weekday=MO(1))
datetime(2018, 4, 2, 14, 37, 0)

First, the day is set to 1 (the first of the month), then 25 hours are added, to get to the 2nd day and 14th hour, finally the weekday is applied, but since the 2nd is already a Monday there is no effect.

__init__(dt1=None, dt2=None, years=0, months=0, days=0, leapdays=0, weeks=0, hours=0, minutes=0, seconds=0, microseconds=0, year=None, month=None, day=None, weekday=None, yearday=None, nlyearday=None, hour=None, minute=None, second=None, microsecond=None)
_fix()
weeks()
weeks(value)
_set_months(months)
normalized()

Return a version of this object represented entirely using integer values for the relative attributes.

>>> relativedelta(days=1.5, hours=2).normalized()
relativedelta(days=1, hours=14)
Returns:Returns a dateutil.relativedelta.relativedelta object.
__add__(other)
__radd__(other)
__rsub__(other)
__sub__(other)
__abs__()
__neg__()
__bool__()
__mul__(other)
__eq__(other)
__hash__()
__ne__(other)
__div__(other)
__repr__()
_sign(x)