`optimize._basinhopping`¶

basinhopping: The basinhopping global optimization algorithm

Module Contents¶

Classes¶

 `Storage`(self,minres) Class used to store the lowest energy structure `BasinHoppingRunner`(self,x0,minimizer,step_taking,accept_tests,disp=False) This class implements the core of the basinhopping algorithm. `AdaptiveStepsize`(self,takestep,accept_rate=0.5,interval=50,factor=0.9,verbose=True) Class to implement adaptive stepsize. `RandomDisplacement`(self,stepsize=0.5,random_state=None) Add a random displacement of maximum size, stepsize, to the coordinates `MinimizerWrapper`(self,minimizer,func=None,**kwargs) wrap a minimizer function as a minimizer class `Metropolis`(self,T,random_state=None) Metropolis acceptance criterion

Functions¶

 `basinhopping`(func,x0,niter=100,T=1.0,stepsize=0.5,minimizer_kwargs=None,take_step=None,accept_test=None,callback=None,interval=50,disp=False,niter_success=None,seed=None) Find the global minimum of a function using the basin-hopping algorithm `_test_func2d_nograd`(x) `_test_func2d`(x)
class `Storage`(minres)

Class used to store the lowest energy structure

`__init__`(minres)
`_add`(minres)
`update`(minres)
`get_lowest`()
class `BasinHoppingRunner`(x0, minimizer, step_taking, accept_tests, disp=False)

This class implements the core of the basinhopping algorithm.

x0 : ndarray
The starting coordinates.
minimizer : callable
The local minimizer, with signature `result = minimizer(x)`. The return value is an optimize.OptimizeResult object.
step_taking : callable
This function displaces the coordinates randomly. Signature should be `x_new = step_taking(x)`. Note that x may be modified in-place.
accept_tests : list of callables
Each test is passed the kwargs f_new, x_new, f_old and x_old. These tests will be used to judge whether or not to accept the step. The acceptable return values are True, False, or ```"force accept"```. If any of the tests return False then the step is rejected. If the latter, then this will override any other tests in order to accept the step. This can be used, for example, to forcefully escape from a local minimum that `basinhopping` is trapped in.
disp : bool, optional
Display status messages.
`__init__`(x0, minimizer, step_taking, accept_tests, disp=False)
`_monte_carlo_step`()

Do one monte carlo iteration

Randomly displace the coordinates, minimize, and decide whether or not to accept the new coordinates.

`one_cycle`()

Do one cycle of the basinhopping algorithm

`print_report`(energy_trial, accept)

print a status update

class `AdaptiveStepsize`(takestep, accept_rate=0.5, interval=50, factor=0.9, verbose=True)

This class wraps the step taking class and modifies the stepsize to ensure the true acceptance rate is as close as possible to the target.

takestep : callable
The step taking routine. Must contain modifiable attribute takestep.stepsize
accept_rate : float, optional
The target step acceptance rate
interval : int, optional
Interval for how often to update the stepsize
factor : float, optional
The step size is multiplied or divided by this factor upon each update.
verbose : bool, optional
`__init__`(takestep, accept_rate=0.5, interval=50, factor=0.9, verbose=True)
`__call__`(x)
`_adjust_step_size`()
`take_step`(x)
`report`(accept, **kwargs)

“called by basinhopping to report the result of the step”

class `RandomDisplacement`(stepsize=0.5, random_state=None)

Add a random displacement of maximum size, stepsize, to the coordinates

update x inplace

stepsize : float, optional
stepsize
random_state : None or np.random.RandomState instance, optional
The random number generator that generates the displacements
`__init__`(stepsize=0.5, random_state=None)
`__call__`(x)
class `MinimizerWrapper`(minimizer, func=None, **kwargs)

wrap a minimizer function as a minimizer class

`__init__`(minimizer, func=None, **kwargs)
`__call__`(x0)
class `Metropolis`(T, random_state=None)

Metropolis acceptance criterion

random_state : None or np.random.RandomState object
Random number generator used for acceptance test
`__init__`(T, random_state=None)
`accept_reject`(energy_new, energy_old)
`__call__`(**kwargs)

f_new and f_old are mandatory in kwargs

`basinhopping`(func, x0, niter=100, T=1.0, stepsize=0.5, minimizer_kwargs=None, take_step=None, accept_test=None, callback=None, interval=50, disp=False, niter_success=None, seed=None)

Find the global minimum of a function using the basin-hopping algorithm

func : callable `f(x, *args)`
Function to be optimized. `args` can be passed as an optional item in the dict `minimizer_kwargs`
x0 : ndarray
Initial guess.
niter : integer, optional
The number of basin hopping iterations
T : float, optional
The “temperature” parameter for the accept or reject criterion. Higher “temperatures” mean that larger jumps in function value will be accepted. For best results `T` should be comparable to the separation (in function value) between local minima.
stepsize : float, optional
initial step size for use in the random displacement.
minimizer_kwargs : dict, optional

Extra keyword arguments to be passed to the minimizer `scipy.optimize.minimize()` Some important options could be:

method : str
The minimization method (e.g. `"L-BFGS-B"`)
args : tuple
Extra arguments passed to the objective function (`func`) and its derivatives (Jacobian, Hessian).
take_step : callable `take_step(x)`, optional
Replace the default step taking routine with this routine. The default step taking routine is a random displacement of the coordinates, but other step taking algorithms may be better for some systems. `take_step` can optionally have the attribute `take_step.stepsize`. If this attribute exists, then `basinhopping` will adjust `take_step.stepsize` in order to try to optimize the global minimum search.
accept_test : callable, `accept_test(f_new=f_new, x_new=x_new, f_old=fold, x_old=x_old)`, optional
Define a test which will be used to judge whether or not to accept the step. This will be used in addition to the Metropolis test based on “temperature” `T`. The acceptable return values are True, False, or `"force accept"`. If any of the tests return False then the step is rejected. If the latter, then this will override any other tests in order to accept the step. This can be used, for example, to forcefully escape from a local minimum that `basinhopping` is trapped in.
callback : callable, `callback(x, f, accept)`, optional
A callback function which will be called for all minima found. `x` and `f` are the coordinates and function value of the trial minimum, and `accept` is whether or not that minimum was accepted. This can be used, for example, to save the lowest N minima found. Also, `callback` can be used to specify a user defined stop criterion by optionally returning True to stop the `basinhopping` routine.
interval : integer, optional
interval for how often to update the `stepsize`
disp : bool, optional
Set to True to print status messages
niter_success : integer, optional
Stop the run if the global minimum candidate remains the same for this number of iterations.
seed : int or np.random.RandomState, optional
If seed is not specified the np.RandomState singleton is used. If seed is an int, a new np.random.RandomState instance is used, seeded with seed. If seed is already a np.random.RandomState instance, then that np.random.RandomState instance is used. Specify seed for repeatable minimizations. The random numbers generated with this seed only affect the default Metropolis accept_test and the default take_step. If you supply your own take_step and accept_test, and these functions use random number generation, then those functions are responsible for the state of their random number generator.
res : OptimizeResult
The optimization result represented as a `OptimizeResult` object. Important attributes are: `x` the solution array, `fun` the value of the function at the solution, and `message` which describes the cause of the termination. The `OptimzeResult` object returned by the selected minimizer at the lowest minimum is also contained within this object and can be accessed through the `lowest_optimization_result` attribute. See OptimizeResult for a description of other attributes.
minimize :
The local minimization function called once for each basinhopping step. `minimizer_kwargs` is passed to this routine.

Basin-hopping is a stochastic algorithm which attempts to find the global minimum of a smooth scalar function of one or more variables [1] [2] [3] [4]. The algorithm in its current form was described by David Wales and Jonathan Doye [2] http://www-wales.ch.cam.ac.uk/.

The algorithm is iterative with each cycle composed of the following features

1. random perturbation of the coordinates
2. local minimization
3. accept or reject the new coordinates based on the minimized function value

The acceptance test used here is the Metropolis criterion of standard Monte Carlo algorithms, although there are many other possibilities [3].

This global minimization method has been shown to be extremely efficient for a wide variety of problems in physics and chemistry. It is particularly useful when the function has many minima separated by large barriers. See the Cambridge Cluster Database http://www-wales.ch.cam.ac.uk/CCD.html for databases of molecular systems that have been optimized primarily using basin-hopping. This database includes minimization problems exceeding 300 degrees of freedom.

See the free software program GMIN (http://www-wales.ch.cam.ac.uk/GMIN) for a Fortran implementation of basin-hopping. This implementation has many different variations of the procedure described above, including more advanced step taking algorithms and alternate acceptance criterion.

For stochastic global optimization there is no way to determine if the true global minimum has actually been found. Instead, as a consistency check, the algorithm can be run from a number of different random starting points to ensure the lowest minimum found in each example has converged to the global minimum. For this reason `basinhopping` will by default simply run for the number of iterations `niter` and return the lowest minimum found. It is left to the user to ensure that this is in fact the global minimum.

Choosing `stepsize`: This is a crucial parameter in `basinhopping` and depends on the problem being solved. Ideally it should be comparable to the typical separation between local minima of the function being optimized. `basinhopping` will, by default, adjust `stepsize` to find an optimal value, but this may take many iterations. You will get quicker results if you set a sensible value for `stepsize`.

Choosing `T`: The parameter `T` is the temperature used in the metropolis criterion. Basinhopping steps are accepted with probability `1` if `func(xnew) < func(xold)`, or otherwise with probability:

```exp( -(func(xnew) - func(xold)) / T )
```

So, for best results, `T` should to be comparable to the typical difference in function values between local minima.

New in version 0.12.0.

 [1] Wales, David J. 2003, Energy Landscapes, Cambridge University Press, Cambridge, UK.
 [2] (1, 2) Wales, D J, and Doye J P K, Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of Physical Chemistry A, 1997, 101, 5111.
 [3] (1, 2) Li, Z. and Scheraga, H. A., Monte Carlo-minimization approach to the multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. USA, 1987, 84, 6611.
 [4] Wales, D. J. and Scheraga, H. A., Global optimization of clusters, crystals, and biomolecules, Science, 1999, 285, 1368.

The following example is a one-dimensional minimization problem, with many local minima superimposed on a parabola.

```>>> from scipy.optimize import basinhopping
>>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x
>>> x0=[1.]
```

Basinhopping, internally, uses a local minimization algorithm. We will use the parameter `minimizer_kwargs` to tell basinhopping which algorithm to use and how to set up that minimizer. This parameter will be passed to `scipy.optimize.minimize()`.

```>>> minimizer_kwargs = {"method": "BFGS"}
>>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs,
...                    niter=200)
>>> print("global minimum: x = %.4f, f(x0) = %.4f" % (ret.x, ret.fun))
global minimum: x = -0.1951, f(x0) = -1.0009
```

Next consider a two-dimensional minimization problem. Also, this time we will use gradient information to significantly speed up the search.

```>>> def func2d(x):
...     f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] +
...                                                            0.2) * x[0]
...     df = np.zeros(2)
...     df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
...     df[1] = 2. * x[1] + 0.2
...     return f, df
```

We’ll also use a different local minimization algorithm. Also we must tell the minimizer that our function returns both energy and gradient (jacobian)

```>>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True}
>>> x0 = [1.0, 1.0]
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
...                    niter=200)
>>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0],
...                                                           ret.x[1],
...                                                           ret.fun))
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109
```

Here is an example using a custom step taking routine. Imagine you want the first coordinate to take larger steps then the rest of the coordinates. This can be implemented like so:

```>>> class MyTakeStep(object):
...    def __init__(self, stepsize=0.5):
...        self.stepsize = stepsize
...    def __call__(self, x):
...        s = self.stepsize
...        x[0] += np.random.uniform(-2.*s, 2.*s)
...        x[1:] += np.random.uniform(-s, s, x[1:].shape)
...        return x
```

Since `MyTakeStep.stepsize` exists basinhopping will adjust the magnitude of `stepsize` to optimize the search. We’ll use the same 2-D function as before

```>>> mytakestep = MyTakeStep()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
...                    niter=200, take_step=mytakestep)
>>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0],
...                                                           ret.x[1],
...                                                           ret.fun))
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109
```

Now let’s do an example using a custom callback function which prints the value of every minimum found

```>>> def print_fun(x, f, accepted):
...         print("at minimum %.4f accepted %d" % (f, int(accepted)))
```

We’ll run it for only 10 basinhopping steps this time.

```>>> np.random.seed(1)
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
...                    niter=10, callback=print_fun)
at minimum 0.4159 accepted 1
at minimum -0.9073 accepted 1
at minimum -0.1021 accepted 1
at minimum -0.1021 accepted 1
at minimum 0.9102 accepted 1
at minimum 0.9102 accepted 1
at minimum 2.2945 accepted 0
at minimum -0.1021 accepted 1
at minimum -1.0109 accepted 1
at minimum -1.0109 accepted 1
```

The minimum at -1.0109 is actually the global minimum, found already on the 8th iteration.

Now let’s implement bounds on the problem using a custom `accept_test`:

```>>> class MyBounds(object):
...     def __init__(self, xmax=[1.1,1.1], xmin=[-1.1,-1.1] ):
...         self.xmax = np.array(xmax)
...         self.xmin = np.array(xmin)
...     def __call__(self, **kwargs):
...         x = kwargs["x_new"]
...         tmax = bool(np.all(x <= self.xmax))
...         tmin = bool(np.all(x >= self.xmin))
...         return tmax and tmin
```
```>>> mybounds = MyBounds()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
...                    niter=10, accept_test=mybounds)
```
`_test_func2d_nograd`(x)
`_test_func2d`(x)