# `sparse.csr`¶

Compressed Sparse Row matrix format

## Module Contents¶

### Classes¶

 `csr_matrix`() Compressed Sparse Row matrix

### Functions¶

 `isspmatrix_csr`(x) Is x of csr_matrix type?
class `csr_matrix`

Compressed Sparse Row matrix

This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where `data`, `row_ind` and `col_ind` satisfy the relationship `a[row_ind[k], col_ind[k]] = data[k]`.
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in `indices[indptr[i]:indptr[i+1]]` and their corresponding values are stored in `data[indptr[i]:indptr[i+1]]`. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of nonzero elements
data
CSR format data array of the matrix
indices
CSR format index array of the matrix
indptr
CSR format index pointer array of the matrix
has_sorted_indices
Whether indices are sorted

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

• efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
• efficient row slicing
• fast matrix vector products
• slow column slicing operations (consider CSC)
• changes to the sparsity structure are expensive (consider LIL or DOK)
```>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
```
```>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
```
```>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
```

As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts:

```>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
...     for term in d:
...         index = vocabulary.setdefault(term, len(vocabulary))
...         indices.append(index)
...         data.append(1)
...     indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
[0, 1, 1, 1]])
```
`transpose`(axes=None, copy=False)
`tolil`(copy=False)
`tocsr`(copy=False)
`tocsc`(copy=False)
`tobsr`(blocksize=None, copy=True)
`_swap`(x)

swap the members of x if this is a column-oriented matrix

`__getitem__`(key)
`__iter__`()
`getrow`(i)

Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

`getcol`(i)

Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

`_get_row_slice`(i, cslice)

Returns a copy of row self[i, cslice]

`_get_submatrix`(row_slice, col_slice)

Return a submatrix of this matrix (new matrix is created).

`isspmatrix_csr`(x)

Is x of csr_matrix type?

x
object to check for being a csr matrix
bool
True if x is a csr matrix, False otherwise
```>>> from scipy.sparse import csr_matrix, isspmatrix_csr
>>> isspmatrix_csr(csr_matrix([[5]]))
True
```
```>>> from scipy.sparse import csc_matrix, csr_matrix, isspmatrix_csc
>>> isspmatrix_csr(csc_matrix([[5]]))
False
```